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Abstract—Sensor  networks are distributed networks 
made up of small sensing devices equipped with processors, 
memory, and short-range wireless communication.  They differ 
from conventional computer networks in that they have severe 
energy constraints, redundant low-rate data, and a plethora of 
information flows.  Many aspects of sensor networks, such as 
routing, preservation of battery power, adaptive self-
configuration, etc., have already been studied in previous papers, 
e.g., [1, 2, 3].  However, to the best knowledge of the authors, the 
area of sensor network quality of service (QoS) remains largely 
open.  This is a rich area because sensor deaths and sensor 
replenishments make it difficult to specify the optimum number 
of sensors (this being the service quality that we address in this 
paper) that should be sending information at any given time.  In 
this paper we present an amalgamation of QoS feedback and 
sensor networks.  We use the idea of allowing the base station to 
communicate QoS information to each of the sensors using a 
broadcast channel and we use the mathematical paradigm of the 
Gur Game to dynamically adjust to the optimum number of 
sensors.  The result is a robust sensor network that allows the 
base station to dynamically adjust the resolution of the QoS it 
receives from the sensors, depending on varying circumstances.  

 

 
                           I.  INTRODUCTION 

Sensor networks of the future are envisioned as 
thousands or more of inexpensive wireless nodes.  Operating 
unattended, each of these sensors will be equipped with some 
computational power and sensing ability (e.g., sonar, radar, 
seismic, etc.).  They are intended for surveillance applications 
such as those found in the military, environment, and deep 
space [4, 5, 6, 7].  The hardware technologies for these 
networks—low-cost processors, miniature sensing and radio 
modules—are available today, with future improvements in 
cost and capabilities expected within this decade.  Wireless 
sensor networks improve sensing accuracy by providing 
distributed processing of vast quantities of sensing 
information.  When networked, sensors can aggregate such 
data to provide a more complete view of the environment.  
Sensor networks can also focus their attention on “important 
events” detected by other sensors in the network (e.g., a person 
walking).  Sensor networks are robust in that they can continue 
to provide information despite the failure of individual 
sensors.  Sensors are envisioned to be interchangeable, and a 
significant amount of the data gathered will tend to be 
redundant [1].     
 Sensor networks are very different from conventional 
computer networks.  First, because sensors have a limited 
supply of energy, energy-conserving forms of communication 
and computation are essential to wireless sensor networks.  

Second, since sensors have limited computing power, they 
may not be able to run sophisticated network protocols.  Third, 
since the bandwidth of wireless links connecting sensor nodes 
is often limited, inter-sensor communication is further 
constrained [1].    
 Although the study of wireless sensor networks is still 
a burgeoning field, many aspects of sensor networks, such as 
routing, preservation of battery power, adaptive self-
configuration, etc., have already been studied in previous 
papers, e.g., [1, 2, 3].  In this paper, however, we explore the 
area of sensor network quality of service (QoS).  This is a rich 
area because sensor deaths (e.g., as a result of battery failure) 
and sensor replenishments (e.g., more sensors being dropped 
from an airplane or recharging of batteries) make it difficult to 
control the optimum number of sensors that should be sending 
information at any given time.      
 In this paper we present an amalgamation of QoS 
feedback and sensor networks.  We use the idea of allowing the 
base station to communicate QoS information to each of the sensors 
using a broadcast channel and we use the mathematical paradigm of 
the Gur Game to dynamically adjust to the optimum number of 
sensors.  The result is a robust sensor network that allows the 
base station to dynamically adjust the number of sensors being 
activated, thereby controlling the resolution of QoS it is 
receives from the sensors, depending on varying 
circumstances.     
 The remainder of this paper is organized as follows:  
Section II presents the problem description, and Section III 
surveys some of the previous work in wireless sensor 
networks.  In Section IV we present a description of the Gur 
Game paradigm and Section V describes the network model 
that we use and the QoS control algorithm for sensor 
networks.  Section VI shows the results of simulation for the 
algorithm, and Section VII concludes the paper. 
                     II.  PROBLEM DESCRIPTION 

Imagine a future where stimuli, running the gamut 
from infantry moving across a battlefield to seismic 
information gathering on the surface of Mars, is collected by a 
host of small sensing devices.  Such information is as 
voluminous as it is diverse, and the protocols instrumenting 
these sensor networks of the near-future are already being 
developed today.  However, one area in this exciting vision 
remains rather unexplored.  This is the area of sensor network 
QoS. 

What is sensor network QoS?  There are a variety of 
definitions possible, but for the purposes of this paper, we 
define it to mean sensor network resolution.  Specifically, 
depending on the different stimuli present in the sensor 
network, we define it as the optimum number of sensors 

  



sending information toward information-collecting sinks, 
typically base stations.   This is a very important issue, 
because in any sensor network we want to accomplish two 
things:  (1) maximize the lifetime of the sensor network by 
having sensors periodically power-down to conserve their 
battery energy, and (2) have enough sensors powered-up and 
sending packets toward the information sinks so that enough 
data is being collected (we define a live sensor to be a sensor 
that has not run out of battery power).  Note that the 
information sinks need a certain amount of information 
gathered from the different sensors, but sensors in close 
proximity to each other allow many of those sensors to be 
powered-down.  This is the optimization problem we address. 
 What makes this problem hard?  Let us assume for 
the moment that we have a “naïve” sensor network up and 
running, and that there is one base station with a broadcast 
channel to all the sensors that knows the optimal number of 
sensors that should be powered-on and sending packets at any 
given time.  Then at time t, we could broadcast the probability 
p*(t) = (optimal number of sensors turned on at time t / total 
number of live sensors at time t) to all the sensors and have 
each sensor power-up with probability p*(t).  One would think 
that this would get, on average, the optimum number of 
sensors powered-up at time t.  However, this requires us to 
know the total number of live sensors at any given time.  This 
is a very difficult number to calculate because sensor networks 
will likely consist of thousands of sensors randomly thrown 
about a geographic area.  Further, as time progresses, sensors 
will likely expire (e.g., due to battery failure, being blown up 
by tanks, etc.) and new sensors may well be redistributed (e.g., 
dropped by airplane, battery power regenerated via solar 
power, etc.), making the population highly dynamic.  
 In this paper, we present an algorithm that addresses 
our two goals (stated earlier in this section), and that, at the 
same time, is robust enough to adapt to these changes in the 
network and simple enough to be run on small, and possibly 
disposable, sensors. 
                         III.  PREVIOUS WORK 

We now briefly survey some of the previous work in 
the field:     
 Reference [1] presents a family of adaptive protocols 
called SPIN (Sensor Protocols for Information via 
Negotiation) that efficiently disseminate information among 
sensors in an energy-constrained wireless sensor network.  
Nodes running a SPIN communication protocol name their 
data using high-level data descriptors, called meta-data.  They 
use meta-data negotiations to eliminate the transmission of 
redundant data throughout the network.  However, there are no 
means for data sinks (base stations) to allow for QoS 
negotiations.    
 Reference [9] presents the paradigm of directed 
diffusion.  In this scheme, a sink requests data by sending 
interests for named data.  Data matching the interest is then 
drawn toward that node.  Intermediate nodes can cache or 
transform data, and may direct interests based on previously 
cached data.  However, once again, there is no provision made 
for actively regulating QoS.  

 Reference [7] puts forth the paradigm of data 
aggregation.  The idea is to combine the data coming from 
different sources en route—eliminating redundancy, 
minimizing the number of transmissions, and thus saving 
energy.  This paradigm shifts the focus from the traditional 
address-centric approaches for networking (e.g., finding short 
routes between pairs of addressable end-nodes) to a more data-
centric approach (finding routes from multiple sources to a 
single destination that allows in-network consolidation of 
redundant data).  Again, however, no provisions are made for 
fine-tuning QoS at the information sinks.   
 Perhaps [10] is the most relevant work to the present 
study as it actively probes the question of QoS that the base 
stations are receiving from the sensors.  However, it defines 
QoS as total coverage in a static fashion.  That is, it does not 
allow a data sink to dynamically alter the QoS it is receiving 
from the sensors, depending on varying circumstances (e.g., 
troops marching across a battlefield).  The present work 
involving the Gur Algorithm, on the other hand, allows the 
number of powered-up sensors to change dynamically, thereby 
adjusting the QoS seen by the base station. 
                            IV.  THE GUR GAME 

Our algorithm, which we describe in the Section V, 
uses the mathematical paradigm of the Gur Game.  We 
describe the basic idea of the Gur Game in the following 
paragraphs. 

Let us introduce the Gur Game with a simple example 
[8].  Imagine that we have many players, none of whom are 
aware of the others, and a referee.  Every second, the referee 
asks each player to vote yes or no, then counts up the yes and 
no answers.  A reward probability r = r(k) is generated as a 
function of the number k of players who voted yes.  We 
assume that 0 ≤ r(k) ≤ 1.  A typical function is shown in Fig. 1.  
Each player, regardless of how he or she voted, is then 
independently rewarded (with probability r) or penalized (with 
probability 1-r).  For instance, let us assume that at some point 
the number of players voting yes was k1.  The reward 
probability would be r(k1).  Each player is then rewarded with 
probability r(k1).  Note that the maximum of the example 
occurs at k* = 35.  We can show the following:  No matter 
how many players there are, we can “construct” them in such a 
way that approximately k* of them (in this case, 35) vote yes 
after enough trials.  This “Gur Game” property holds for 
almost any kind of function—whether or not it is 
discontinuous, multimodal, etc.  Note further that the 
individual automata know neither the number k nor the reward 
function r(k).    
 Moreover, each player plays solely in a greedy 
fashion, each time voting the way that seems to give the player 
the best payoff.  This is somewhat unexpected.  Greed affects 
outcomes in an unpredictable manner.  An example of greed 
leading to significantly sub-optimal outcomes is the famous 
prisoner’s dilemma.  In this scenario, two entities (the 
prisoners) greedily optimize their own behavior, but together 
they produce a globally sub-optimal result.  This effect is 
common in greedy solutions.  However, we will see that the 

  



method used here does not have this property because the 
players do not attempt to predict the behavior of the other 
players.  Instead, each player performs by trial and error and 
simply preferentially repeats those actions that produce the 
best result for that player.     
 The natural question then becomes: “How do we 
construct players such that this remarkable property holds?”  
The answer (as shown by Tsetlin in [13]) is to allow each 
player to have a memory of his previous trials.  Specifically, 
we associate with each player j, a finite discrete-time 
automaton Mj.  The finite state automaton represents the 
player’s memory.  It is a single (nearest-neighbor) chain of 
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Figure 1.  Typical Gur Reward Function 

consecutive states where the total size of the memory is 2N, 
for some arbitrary N.  Starting with the leftmost state, we 
number the states from –N to –1, then from 1 to N (see Fig.  
2).  Note that this partitions the chain into a left half (with 
negative numbered states) and a right half (with positive 
numbered states).  The player is allowed to be in only one state 
at any given time.  Transitions exist between states j and j+1 
and j-1 (i.e., the player can transition only to adjacent states).  
If j happens to be N, then the transitions allowed are only to 
state N-1 and N (i.e., a self-loop).  An analogous case exists 
when j happens to be –N.     
 The player votes yes when he is in a positive 
numbered state, and no when he is in a negative numbered 
state.  When in a negative numbered state, he transitions 
leftward if he is rewarded by the referee and rightward when 
he is punished.  Analogously, when in a positive numbered 
state, he transitions rightward when rewarded by the referee 
and leftward when he is punished.  In other words, “center 
seeking” behavior is for punishment, and “edge seeking” 
behavior is for reward.    
 With this setup, it has been proven [13] that the Gur 
game property holds.     
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Figure 2.  Gur Memory of Size N=2. 

We give a new application of the Gur Game in the 
ent work.  Also, in Section VI, we study parameters 
lving the Gur Game and networks not previously 

sidered.   
    V.  NETWORK MODEL AND ALGORITHM 

Let us assume that we have a collection of m sensors 
hrough Sm and one base station B.  Time is divided into 
rete intervals—each of one-second duration.  Each sensor 
s a distance di from base station B.  We interpret this to 
n that a packet is sent reliably from Si to B and takes di 
nds to reach B.  B, on the other hand, is assumed to have a 
dcast channel to all the sensors.  For the purposes of this 

er, we focus on the delay from sensor to base station while 
ming that feedback given from the base station arrives 

antaneously to all the sensors.   
We associate with each sensor Si a finite state 

maton Mi.  The finite automaton, of fixed size N, will be 
he standard Gur Game form described in the previous 
ion.  The sensor Si will power-up when it is in a positive 
bered state, and power-down when it is in a negative 
bered state.  We assume that in a power-down state, a 
or can still receive and react to low-level signals.  This is 

ilar to the sensor paging situation described in [14].
At each second, if a sensor is powered-up, it will send 

ta packet containing sensor information toward the base 
on.  In this paper, we do not address issues involving 
ing.  If a sensor is powered-down, it simply “sleeps.”  Note 
 this type of sensor network assumes that the base station 
ts information from its sensors regardless of whether there 
active stimuli or not.  An example of this situation would 
ensors deployed on the surface of Mars sending seismic 
rmation toward the base station.  

The base station B desires optimal QoS from the 
or network at each time t.  The tricky point here is what 
consider to be optimal QoS.  In Section II we defined 
mal QoS to mean an optimal number of sensors powered 
t time t.  However, in order to accomplish this, we needed 
now the total number of live sensors at time t.  This is non-
ial, as was previously explained.  Instead of this, let us 
me that the base station wants information uniformly 

ributed from all the sensors (like gathering information 
 a geographic region).  Then we can redefine optimal QoS 

me t to mean receiving an optimal number of packets at 
 t.  Assuming a “well behaved” QoS protocol that has 

n running for a sufficiently long period, we can assume that 
iving k packets at time t means that approximately k 

 



sensors, distributed over the total geographic area, are 
powered-on at time t.  It is a subtle point to redefine QoS in 
this way, but it does relieve us from the burden of trying to 
calculate the total number of live sensors at time t.  
 Obviously the base station will not necessarily 
receive the optimum number of desired packets at each time t.  
The question  is, then, what to do about it?  This is where our 
algorithm comes in.  We associate with the base station a Gur 
reward function r(k).  At each time t, the base station counts 
the number of packets kt it has received from the sensors.  It 
then calculates the Gur reward probability r(kt).  Finally, it 
broadcasts this probability to all the sensors.  Each sensor, in 
turn, independently rewards itself with probability r(kt) and 
punishes itself with probability 1-r(kt).  This corresponds to 
playing the Gur Game with the sensor network where a yes 
vote by the sensors means being powered-on and sending a 
packet, and a no vote by the sensors means being powered-off.  
The base station simply counts the number of yes votes in 
terms of the number of packets it has received and 
independently rewards or punishes the sensors accordingly. 
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Figure 3.  Active Sensors for the Simple Case. 

Specifically, we start off with an initial population of 
100 sensors, but new sensors are born into the system with 
exponentially distributed times between births with mean 100 
seconds, and each sensor remains alive for an exponentially 
distributed time with mean 101 seconds.  This model 
corresponds to a population of sensors that die, say, because of 
battery failure, and having sensors revive after they reenergize 
with solar energy.  The simulation was run for 10,000 seconds.  

                                 VI.  SIMULATION 
We simulated the logical behavior of the Gur Game 

and abstracted away the details of the radio channel itself.  We 
begin with a simple example.  We assume that the memory 
size N is equal to 1 and that we have 100 sensors in the 
network with no sensor failures or renewals.  Each sensor 
picks a random state as its initial state.  We assume that the 
base station desires a rate of 35 packets received at each time t.  
(It was noted in simulations that obtaining a rate of 50 packets 
per second was relatively easy—undoubtedly  because when 
the voting is skewed one way or the other, even a small 
possibility of punishment rebalances the votes by shifting 
votes from the majority to the minority.  In order to stress the 
system, we choose a desired optimal sufficiently far from 50—
in this case, 35.)  The reward function used by the base station 
is 0.2 + 0.8 ev where v = -0.002 (kt – 35)2 and kt = the number 
of packets received at time t (this was the plot we showed in 
Fig. 1).  In Fig. 3 we show a trace of the number of packets 
received versus time for a sample run of 2000 seconds for this 
control case based on the above parameters. 

As one can readily see, packet delay, sensor births 
and sensor deaths cause network fluctuations despite the 
optimal being obtained numerous times.  It was noted in other 
simulations (that could not be included in this paper due to 
space limitations) that: (i) packet delay alone (no births or 
deaths) would cause fluctuations until the optimal was locked 
on for a time greater than max(di), from which point it locked 
on to the optimum (as we saw in Fig. 3);  (ii) sensor births and 
deaths alone (no packet delays) would contain long periods of 
being locked on to the optimal (with a duration on the order of 
a small multiple of the birth and death interarrival times) until 
a birth or death perturbed the population; (iii) together, both 
(delays plus births and deaths) would cause the occurrence of 
an occasional birth or death effect to be dramatically amplified 
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 Figure 4.  Active Sensors for a More Realistic Case. 

As one can see, the number of packets received by the 
base station fluctuates in the beginning but quickly converges 
to the optimal.  Once there, it locks on as each sensor is 
rewarded with probability 1 and feedback is instantaneous.  
From the control case, we next simulate a more interesting set 
of parameters.  The result is shown in Fig. 4.  All the 
parameters are the same as before except that we now assume 
that di is distributed uniformly from 0 to 5 seconds, and we 
now allow the birth and death of sensors.   

 

by the packet delays, which is the behavior shown in Fig. 4.    
However, the algorithm is relatively robust and continually 
drives to the optimum number of 35, despite these problems. 
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