
QoS Control For Sensor Networks

Ranjit Iyer and Leonard Kleinrock
UCLA Computer Science Department

4732 Boelter Hall
Los Angeles, CA 90095-1596

Abstract—Sensor networks are distributed networks
made up of small sensing devices equipped with processors,
memory, and short-range wireless communication. They differ
from conventional computer networks in that they have severe
energy constraints, redundant low-rate data, and a plethora of
information flows. Many aspects of sensor networks, such as
routing, preservation of battery power, adaptive self-
configuration, etc., have already been studied in previous papers,
e.g., [1, 2, 3]. However, to the best knowledge of the authors, the
area of sensor network quality of service (QoS) remains largely
open. This is a rich area because sensor deaths and sensor
replenishments make it difficult to specify the optimum number
of sensors (this being the service quality that we address in this
paper) that should be sending information at any given time. In
this paper we present an amalgamation of QoS feedback and
sensor networks. We use the idea of allowing the base station to
communicate QoS information to each of the sensors using a
broadcast channel and we use the mathematical paradigm of the
Gur Game to dynamically adjust to the optimum number of
sensors. The result is a robust sensor network that allows the
base station to dynamically adjust the resolution of the QoS it
receives from the sensors, depending on varying circumstances.

 I. INTRODUCTION

Sensor networks of the future are envisioned as
thousands or more of inexpensive wireless nodes. Operating
unattended, each of these sensors will be equipped with some
computational power and sensing ability (e.g., sonar, radar,
seismic, etc.). They are intended for surveillance applications
such as those found in the military, environment, and deep
space [4, 5, 6, 7]. The hardware technologies for these
networks—low-cost processors, miniature sensing and radio
modules—are available today, with future improvements in
cost and capabilities expected within this decade. Wireless
sensor networks improve sensing accuracy by providing
distributed processing of vast quantities of sensing
information. When networked, sensors can aggregate such
data to provide a more complete view of the environment.
Sensor networks can also focus their attention on “important
events” detected by other sensors in the network (e.g., a person
walking). Sensor networks are robust in that they can continue
to provide information despite the failure of individual
sensors. Sensors are envisioned to be interchangeable, and a
significant amount of the data gathered will tend to be
redundant [1].
 Sensor networks are very different from conventional
computer networks. First, because sensors have a limited
supply of energy, energy-conserving forms of communication
and computation are essential to wireless sensor networks.

Second, since sensors have limited computing power, they
may not be able to run sophisticated network protocols. Third,
since the bandwidth of wireless links connecting sensor nodes
is often limited, inter-sensor communication is further
constrained [1].
 Although the study of wireless sensor networks is still
a burgeoning field, many aspects of sensor networks, such as
routing, preservation of battery power, adaptive self-
configuration, etc., have already been studied in previous
papers, e.g., [1, 2, 3]. In this paper, however, we explore the
area of sensor network quality of service (QoS). This is a rich
area because sensor deaths (e.g., as a result of battery failure)
and sensor replenishments (e.g., more sensors being dropped
from an airplane or recharging of batteries) make it difficult to
control the optimum number of sensors that should be sending
information at any given time.
 In this paper we present an amalgamation of QoS
feedback and sensor networks. We use the idea of allowing the
base station to communicate QoS information to each of the sensors
using a broadcast channel and we use the mathematical paradigm of
the Gur Game to dynamically adjust to the optimum number of
sensors. The result is a robust sensor network that allows the
base station to dynamically adjust the number of sensors being
activated, thereby controlling the resolution of QoS it is
receives from the sensors, depending on varying
circumstances.
 The remainder of this paper is organized as follows:
Section II presents the problem description, and Section III
surveys some of the previous work in wireless sensor
networks. In Section IV we present a description of the Gur
Game paradigm and Section V describes the network model
that we use and the QoS control algorithm for sensor
networks. Section VI shows the results of simulation for the
algorithm, and Section VII concludes the paper.
 II. PROBLEM DESCRIPTION

Imagine a future where stimuli, running the gamut
from infantry moving across a battlefield to seismic
information gathering on the surface of Mars, is collected by a
host of small sensing devices. Such information is as
voluminous as it is diverse, and the protocols instrumenting
these sensor networks of the near-future are already being
developed today. However, one area in this exciting vision
remains rather unexplored. This is the area of sensor network
QoS.

What is sensor network QoS? There are a variety of
definitions possible, but for the purposes of this paper, we
define it to mean sensor network resolution. Specifically,
depending on the different stimuli present in the sensor
network, we define it as the optimum number of sensors

sending information toward information-collecting sinks,
typically base stations. This is a very important issue,
because in any sensor network we want to accomplish two
things: (1) maximize the lifetime of the sensor network by
having sensors periodically power-down to conserve their
battery energy, and (2) have enough sensors powered-up and
sending packets toward the information sinks so that enough
data is being collected (we define a live sensor to be a sensor
that has not run out of battery power). Note that the
information sinks need a certain amount of information
gathered from the different sensors, but sensors in close
proximity to each other allow many of those sensors to be
powered-down. This is the optimization problem we address.
 What makes this problem hard? Let us assume for
the moment that we have a “naïve” sensor network up and
running, and that there is one base station with a broadcast
channel to all the sensors that knows the optimal number of
sensors that should be powered-on and sending packets at any
given time. Then at time t, we could broadcast the probability
p*(t) = (optimal number of sensors turned on at time t / total
number of live sensors at time t) to all the sensors and have
each sensor power-up with probability p*(t). One would think
that this would get, on average, the optimum number of
sensors powered-up at time t. However, this requires us to
know the total number of live sensors at any given time. This
is a very difficult number to calculate because sensor networks
will likely consist of thousands of sensors randomly thrown
about a geographic area. Further, as time progresses, sensors
will likely expire (e.g., due to battery failure, being blown up
by tanks, etc.) and new sensors may well be redistributed (e.g.,
dropped by airplane, battery power regenerated via solar
power, etc.), making the population highly dynamic.
 In this paper, we present an algorithm that addresses
our two goals (stated earlier in this section), and that, at the
same time, is robust enough to adapt to these changes in the
network and simple enough to be run on small, and possibly
disposable, sensors.
 III. PREVIOUS WORK

We now briefly survey some of the previous work in
the field:
 Reference [1] presents a family of adaptive protocols
called SPIN (Sensor Protocols for Information via
Negotiation) that efficiently disseminate information among
sensors in an energy-constrained wireless sensor network.
Nodes running a SPIN communication protocol name their
data using high-level data descriptors, called meta-data. They
use meta-data negotiations to eliminate the transmission of
redundant data throughout the network. However, there are no
means for data sinks (base stations) to allow for QoS
negotiations.
 Reference [9] presents the paradigm of directed
diffusion. In this scheme, a sink requests data by sending
interests for named data. Data matching the interest is then
drawn toward that node. Intermediate nodes can cache or
transform data, and may direct interests based on previously
cached data. However, once again, there is no provision made
for actively regulating QoS.

 Reference [7] puts forth the paradigm of data
aggregation. The idea is to combine the data coming from
different sources en route—eliminating redundancy,
minimizing the number of transmissions, and thus saving
energy. This paradigm shifts the focus from the traditional
address-centric approaches for networking (e.g., finding short
routes between pairs of addressable end-nodes) to a more data-
centric approach (finding routes from multiple sources to a
single destination that allows in-network consolidation of
redundant data). Again, however, no provisions are made for
fine-tuning QoS at the information sinks.
 Perhaps [10] is the most relevant work to the present
study as it actively probes the question of QoS that the base
stations are receiving from the sensors. However, it defines
QoS as total coverage in a static fashion. That is, it does not
allow a data sink to dynamically alter the QoS it is receiving
from the sensors, depending on varying circumstances (e.g.,
troops marching across a battlefield). The present work
involving the Gur Algorithm, on the other hand, allows the
number of powered-up sensors to change dynamically, thereby
adjusting the QoS seen by the base station.
 IV. THE GUR GAME

Our algorithm, which we describe in the Section V,
uses the mathematical paradigm of the Gur Game. We
describe the basic idea of the Gur Game in the following
paragraphs.

Let us introduce the Gur Game with a simple example
[8]. Imagine that we have many players, none of whom are
aware of the others, and a referee. Every second, the referee
asks each player to vote yes or no, then counts up the yes and
no answers. A reward probability r = r(k) is generated as a
function of the number k of players who voted yes. We
assume that 0 ≤ r(k) ≤ 1. A typical function is shown in Fig. 1.
Each player, regardless of how he or she voted, is then
independently rewarded (with probability r) or penalized (with
probability 1-r). For instance, let us assume that at some point
the number of players voting yes was k1. The reward
probability would be r(k1). Each player is then rewarded with
probability r(k1). Note that the maximum of the example
occurs at k* = 35. We can show the following: No matter
how many players there are, we can “construct” them in such a
way that approximately k* of them (in this case, 35) vote yes
after enough trials. This “Gur Game” property holds for
almost any kind of function—whether or not it is
discontinuous, multimodal, etc. Note further that the
individual automata know neither the number k nor the reward
function r(k).
 Moreover, each player plays solely in a greedy
fashion, each time voting the way that seems to give the player
the best payoff. This is somewhat unexpected. Greed affects
outcomes in an unpredictable manner. An example of greed
leading to significantly sub-optimal outcomes is the famous
prisoner’s dilemma. In this scenario, two entities (the
prisoners) greedily optimize their own behavior, but together
they produce a globally sub-optimal result. This effect is
common in greedy solutions. However, we will see that the

method used here does not have this property because the
players do not attempt to predict the behavior of the other
players. Instead, each player performs by trial and error and
simply preferentially repeats those actions that produce the
best result for that player.
 The natural question then becomes: “How do we
construct players such that this remarkable property holds?”
The answer (as shown by Tsetlin in [13]) is to allow each
player to have a memory of his previous trials. Specifically,
we associate with each player j, a finite discrete-time
automaton Mj. The finite state automaton represents the
player’s memory. It is a single (nearest-neighbor) chain of

r 1-r 1-r r r

-2 -1 1 2

pres
invo
con

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Number of Yes Votes

R
ew

ar
d

Pr
ob

ab
ili

ty

S1 t
disc
Si i
mea
seco
broa
pap
assu
inst

auto
of t
sect
num
num
sens
sim

a da
stati
rout
that
wan
are
be s
info

sens
we
opti
on a
to k
triv
assu
dist
from
at ti
time
bee
rece

Figure 1. Typical Gur Reward Function

consecutive states where the total size of the memory is 2N,
for some arbitrary N. Starting with the leftmost state, we
number the states from –N to –1, then from 1 to N (see Fig.
2). Note that this partitions the chain into a left half (with
negative numbered states) and a right half (with positive
numbered states). The player is allowed to be in only one state
at any given time. Transitions exist between states j and j+1
and j-1 (i.e., the player can transition only to adjacent states).
If j happens to be N, then the transitions allowed are only to
state N-1 and N (i.e., a self-loop). An analogous case exists
when j happens to be –N.
 The player votes yes when he is in a positive
numbered state, and no when he is in a negative numbered
state. When in a negative numbered state, he transitions
leftward if he is rewarded by the referee and rightward when
he is punished. Analogously, when in a positive numbered
state, he transitions rightward when rewarded by the referee
and leftward when he is punished. In other words, “center
seeking” behavior is for punishment, and “edge seeking”
behavior is for reward.
 With this setup, it has been proven [13] that the Gur
game property holds.

 r 1-r 1-r
Figure 2. Gur Memory of Size N=2.

We give a new application of the Gur Game in the
ent work. Also, in Section VI, we study parameters
lving the Gur Game and networks not previously

sidered.
 V. NETWORK MODEL AND ALGORITHM

Let us assume that we have a collection of m sensors
hrough Sm and one base station B. Time is divided into
rete intervals—each of one-second duration. Each sensor
s a distance di from base station B. We interpret this to
n that a packet is sent reliably from Si to B and takes di
nds to reach B. B, on the other hand, is assumed to have a
dcast channel to all the sensors. For the purposes of this

er, we focus on the delay from sensor to base station while
ming that feedback given from the base station arrives

antaneously to all the sensors.
We associate with each sensor Si a finite state

maton Mi. The finite automaton, of fixed size N, will be
he standard Gur Game form described in the previous
ion. The sensor Si will power-up when it is in a positive
bered state, and power-down when it is in a negative
bered state. We assume that in a power-down state, a
or can still receive and react to low-level signals. This is

ilar to the sensor paging situation described in [14].
At each second, if a sensor is powered-up, it will send

ta packet containing sensor information toward the base
on. In this paper, we do not address issues involving
ing. If a sensor is powered-down, it simply “sleeps.” Note
 this type of sensor network assumes that the base station
ts information from its sensors regardless of whether there
active stimuli or not. An example of this situation would
ensors deployed on the surface of Mars sending seismic
rmation toward the base station.

The base station B desires optimal QoS from the
or network at each time t. The tricky point here is what
consider to be optimal QoS. In Section II we defined
mal QoS to mean an optimal number of sensors powered
t time t. However, in order to accomplish this, we needed
now the total number of live sensors at time t. This is non-
ial, as was previously explained. Instead of this, let us
me that the base station wants information uniformly

ributed from all the sensors (like gathering information
 a geographic region). Then we can redefine optimal QoS

me t to mean receiving an optimal number of packets at
 t. Assuming a “well behaved” QoS protocol that has

n running for a sufficiently long period, we can assume that
iving k packets at time t means that approximately k

sensors, distributed over the total geographic area, are
powered-on at time t. It is a subtle point to redefine QoS in
this way, but it does relieve us from the burden of trying to
calculate the total number of live sensors at time t.
 Obviously the base station will not necessarily
receive the optimum number of desired packets at each time t.
The question is, then, what to do about it? This is where our
algorithm comes in. We associate with the base station a Gur
reward function r(k). At each time t, the base station counts
the number of packets kt it has received from the sensors. It
then calculates the Gur reward probability r(kt). Finally, it
broadcasts this probability to all the sensors. Each sensor, in
turn, independently rewards itself with probability r(kt) and
punishes itself with probability 1-r(kt). This corresponds to
playing the Gur Game with the sensor network where a yes
vote by the sensors means being powered-on and sending a
packet, and a no vote by the sensors means being powered-off.
The base station simply counts the number of yes votes in
terms of the number of packets it has received and
independently rewards or punishes the sensors accordingly.

Packets Received vs Time

0
10
20
30
40
50
60

0
40

0
80

0
12

00
16

00
20

00

Time

Pa
ck

et
s

R
ec

ei
ve

d

Num Packets
Optimal

Figure 3. Active Sensors for the Simple Case.

Specifically, we start off with an initial population of
100 sensors, but new sensors are born into the system with
exponentially distributed times between births with mean 100
seconds, and each sensor remains alive for an exponentially
distributed time with mean 101 seconds. This model
corresponds to a population of sensors that die, say, because of
battery failure, and having sensors revive after they reenergize
with solar energy. The simulation was run for 10,000 seconds.

 VI. SIMULATION
We simulated the logical behavior of the Gur Game

and abstracted away the details of the radio channel itself. We
begin with a simple example. We assume that the memory
size N is equal to 1 and that we have 100 sensors in the
network with no sensor failures or renewals. Each sensor
picks a random state as its initial state. We assume that the
base station desires a rate of 35 packets received at each time t.
(It was noted in simulations that obtaining a rate of 50 packets
per second was relatively easy—undoubtedly because when
the voting is skewed one way or the other, even a small
possibility of punishment rebalances the votes by shifting
votes from the majority to the minority. In order to stress the
system, we choose a desired optimal sufficiently far from 50—
in this case, 35.) The reward function used by the base station
is 0.2 + 0.8 ev where v = -0.002 (kt – 35)2 and kt = the number
of packets received at time t (this was the plot we showed in
Fig. 1). In Fig. 3 we show a trace of the number of packets
received versus time for a sample run of 2000 seconds for this
control case based on the above parameters.

As one can readily see, packet delay, sensor births
and sensor deaths cause network fluctuations despite the
optimal being obtained numerous times. It was noted in other
simulations (that could not be included in this paper due to
space limitations) that: (i) packet delay alone (no births or
deaths) would cause fluctuations until the optimal was locked
on for a time greater than max(di), from which point it locked
on to the optimum (as we saw in Fig. 3); (ii) sensor births and
deaths alone (no packet delays) would contain long periods of
being locked on to the optimal (with a duration on the order of
a small multiple of the birth and death interarrival times) until
a birth or death perturbed the population; (iii) together, both
(delays plus births and deaths) would cause the occurrence of
an occasional birth or death effect to be dramatically amplified

Packets Received vs Time

0
10
20
30
40
50
60
70

0
18

00
34

00
42

34
56

00
70

00
90

00
99

87

Time

Pa
ck

et
s

R
ec

ei
ve

d

Num Packets
Optimal

 Figure 4. Active Sensors for a More Realistic Case.

As one can see, the number of packets received by the
base station fluctuates in the beginning but quickly converges
to the optimal. Once there, it locks on as each sensor is
rewarded with probability 1 and feedback is instantaneous.
From the control case, we next simulate a more interesting set
of parameters. The result is shown in Fig. 4. All the
parameters are the same as before except that we now assume
that di is distributed uniformly from 0 to 5 seconds, and we
now allow the birth and death of sensors.

by the packet delays, which is the behavior shown in Fig. 4.
However, the algorithm is relatively robust and continually
drives to the optimum number of 35, despite these problems.

REFERENCES The last thing we study is the way memory size N
affects these fluctuations; specifically, we measure the
standard deviation from the optimal. All the parameters are
the same, as in the last case, except for the varying size of N.
The simulation was run for 10,000 seconds, and each point
averages five runs. We observe that a minimal value for the
standard deviation is obtained for a relatively small size of N.
Since sensors only have modest memory capacities, our
algorithm is well suited for such networks.

[1] W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols for
Information Dissemination in Wireless Sensor Networks,” Proc. 5th
ACM/IEEE Mobicom Conference, Seattle, WA, August 1999.

[2] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann, “Scalable Coordination
for Wireless Sensor Networks: Self-Configuring Localization Systems,”
Proceeding of the Sixth International Symposium on Communication
Theory and Applications (ISCTA 2001), Ambleside, Lake District, UK,
July 2001.

[3] D. Estrin, “Comm’n Sense: Research Challenges in Embedded
Networking Sensing,” Presented at the UCLA Computer Science
Department Research Review, April 27th 2001. Standard Deviation vs. N

0

5

10

15

20

1 2 3 4 5

N (Memory Size)

St
an

da
rd

 D
ev

. F
ro

m

O
pt

im
um

Avg of 5 Runs

[4] A. Cerpa, et al., “Habitat Monitoring: Application Driver for Wireless
Communications Technology,” 2001 ACM SIGCOMM Workshop on
Data Communications in Latin America and the Caribbean, Costa Rica,
April 2001.

[5] G. Pottie, W. Kaiser, “Wireless Integrated Network Sensors,”
 Communications of the ACM, Vol. 43, No. 5, pp. 551-8, May 2000.
[6] J. Warrior, “Smart Sensor Networks of the Future,” Sensors Magazine,

March 1997.
[7] B. Krishnamachari, D. Estrin,, and S. Wicker, “The Impact of

DataAggregation in Wireless Sensor Networks,” submitted to the 2002
International Workshop of Distributed Event-Based Systems.

Figure 5. Effect of Varying Memory Size. [8] B. Tung, and L. Kleinrock, “Distributed Control Methods,” Proceedings
of the Second International Conference on High Performance Distributed
Computing, 1993.

 VII. CONCLUSION
Sensor networks are an exciting area with very real

applications in the near future. Although many aspects of
sensor networks have been studied before, quality of service
(QoS) for sensor networks remains largely open. As was
indicated, it is a non-trivial problem to specify the optimum
number of sensors that should be sending information at any
given time. In this paper we presented an algorithm using the
Gur Game paradigm that allowed the base station to specify
the optimal number of sensors from which it wanted
information in the face of delays, births and deaths; thus it was
able to adjust the QoS it desired from the sensors. The
algorithm appears to be robust and is able to tolerate delay and
sensor births and deaths reasonably well. In this paper we
have reported the results of a study over a very small portion
of the design space, and in this area, much future work
remains.

[9] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks,”
Proceedings of the Sixth Annual International Conference on Mobile
Computing and Networks (Mobicom 2000), August 2000, Boston,
Massachusetts.

[10] S. Meguerdichian, K. Farinaz, P. Miodrag, M. Srivstava, “Coverage
Problems in Wireless Ad Hoc Sensor Networks,” ICC-IEEE
International Conference on Communications, 2001.

[11] B. Tung, and L. Kleinrock, “Using Finite State Automata to Produce Self-
Optimization and Self-Control,” IEEE Transactions in Parallel and
Distributed Systems, Vol. 7, No. 4, pp. 439-448, 1996.

[12] B. Tung, Distributed Control Using Finite State Automata, PhD
dissertation, UCLA, 1994.

 [13] M. Tsetlin, Finite Automata and Modeling the Simplest Forms of

 Behavior, PhD thesis, V.A. Steklov Mathematical Institute. 1964.
[14] D. Estrin, L. Girod, G. Pottie, M. Srivastava, “Instrumenting the World

with Wireless Sensor Networks,” Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2001),
Salt Lake City, Utah. May 2001.

